Quantum Gravity as a model to test 3+1 Lorentzian Quantum Gravity

نویسنده

  • T. Thiemann
چکیده

The quantization of Lorentzian or Euclidean 2+1 gravity by canonical methods is a well-studied problem. However, the constraints of 2+1 gravity are those of a topological field theory and therefore resemble very little those of the corresponding Lorentzian 3+1 constraints. In this paper we canonically quantize Euclidean 2+1 gravity for arbitrary genus of the spacelike hypersurface with new, classically equivalent constraints that maximally probe the Lorentzian 3+1 situation. We choose the signature to be Euclidean because this implies that the gauge group is, as in the 3+1 case, SU(2) rather than SU(1, 1). We employ, and carry out to full completion, the new quantization method introduced in preceding papers of this series which resulted in a finite 3+1 Lorentzian quantum field theory for gravity. The space of solutions to all constraints turns out to be much larger than the one as obtained by traditional approaches, however, it is fully included. Thus, by suitable restriction of the solution space, we can recover all former results which gives confidence in the new quantization methods. The meaning of the remaining “spurious solutions” is discussed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

3 D Lorentzian Quantum Gravity from the asymmetric ABAB matrix model 1

The asymmetric ABAB-matrix model describes the transfer matrix of threedimensional Lorentzian quantum gravity. We study perturbatively the scaling of the ABAB-matrix model in the neighbourhood of its symmetric solution and deduce the associated renormalization of three-dimensional Lorentzian quantum gravity. pacs: 04.60Gw, 04.20Gz, 04.60Kz, 04.60Nc Presented by J.J. at the Workshop on Random Ge...

متن کامل

Crossing the c=1 Barrier in 2d Lorentzian Quantum Gravity

In an extension of earlier work we investigate the behaviour of two-dimensional Lorentzian quantum gravity under coupling to a conformal field theory with c > 1. This is done by analyzing numerically a system of eight Ising models (corresponding to c = 4) coupled to dynamically triangulated Lorentzian geometries. It is known that a single Ising model couples weakly to Lorentzian quantum gravity...

متن کامل

Lorentzian Quantum Gravity from the asymmetric ABAB matrix model 1

The asymmetric ABAB-matrix model describes the transfer matrix of threedimensional Lorentzian quantum gravity. We study perturbatively the scaling of the ABAB-matrix model in the neighbourhood of its symmetric solution and deduce the associated renormalization of three-dimensional Lorentzian quantum gravity. pacs: 04.60Gw, 04.20Gz, 04.60Kz, 04.60Nc Presented by J.J. at the Workshop on Random Ge...

متن کامل

Discrete Lorentzian Quantum Gravity

Just as for non-abelian gauge theories at strong coupling, discrete lattice methods are a natural tool in the study of non-perturbative quantum gravity. They have to reflect the fact that the geometric degrees of freedom are dynamical, and that therefore also the lattice theory must be formulated in a background-independent way. After summarizing the status quo of discrete covariant lattice mod...

متن کامل

A non-perturbative Lorentzian path integral for gravity

A well-defined regularized path integral for Lorentzian quantum gravity in three and four dimensions is constructed, given in terms of a sum over dynamically triangulated causal space-times. Each Lorentzian geometry and its associated action have a unique Wick rotation to the Euclidean sector. All space-time histories possess a distinguished notion of a discrete proper time. For finite lattice ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008